- NUFFIELD, E. W. & MILNE, I. H. (1953). Am. Mineral. 38, 476–488.
- Ross, M. & Evans, H. T. (1964). Am. Mineral. 49, 1578– 1602.
- Ross, M., Evans, H. T. & Appleman, D. E. (1964). Am. Mineral. 49, 1603–1621.

SHILTON, M. G. & HOWE, A. T. (1977). Mater. Res. Bull. 12, 701–706.

- STEWART, J. M. (1976). The XRAY 76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- WEIGEL, F. & HOFFMAN, G. (1976). J. Less-Common Met. 44, 99-136.

Acta Cryst. (1978). B34, 3734-3736

β -Uranyl Sulphate and Uranyl Selenate

By N. P. Brandenburg* and B. O. Loopstra

Laboratory for Crystallography, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

(Received 10 July 1978; accepted 1 August 1978)

Abstract. β-UO₂SO₄, monoclinic, $P2_1/c$, a = 6.760 (1), b = 5.711 (1), c = 12.824 (4) Å, $\beta = 102.91$ (2)°, V = 482.6 Å³, Z = 4, $D_c = 5.04$ g cm⁻³. α-UO₂SeO₄, monoclinic, $P2_1/c$, a = 6.909 (1), b = 5.525 (1), c = 13.318 (3) Å, $\beta = 103.79$ (2)°, V = 493.7 Å³, Z = 4, $D_c = 5.569$ g cm⁻³. β-UO₂SeO₄, monoclinic, $P2_1/c$, a = 6.979 (1), b = 5.795 (1), c = 13.235 (2) Å, $\beta = 103.71$ (2)°, V = 520.0 Å³, Z = 4, $D_c = 5.279$ g cm⁻³. The structures of the isostructural title compounds have been solved from X-ray and neutron diffraction powder data. U atoms are coordinated by pentagonal bipyramids of O atoms. Remarkably, a uranyl O atom of one bipyramid belongs to the pentagonal base plane of the next.

* Now at Laboratory of Chemical Physics, University of Groningen, Nijenborgh 16, 9747 AG, Groningen, The Netherlands.

Table 1. Coordinates and thermal parameters

	x	У	Ζ	B (Å ²)
(<i>a</i>) For <i>j</i>	₿-UO₂SO₄			
U	0.315(1)	0.744 (1)	0.658 (1)	1.3 (2)
S	0.209 (4)	0.454 (5)	0.888 (2)	2.7 (7)
O(1)	0.612 (2)	0.789 (2)	0.592 (1)	1.5 (2)
O(2)	0.220 (2)	0.954 (2)	0.502 (1)	1.5(2)
O(3)	-0.028 (2)	0.816 (2)	0.643 (1)	1.5 (2)
O(4)	0.241 (2)	0.632 (2)	0.822(1)	1.5 (2)
O(5)	0.604 (2)	0.514 (3)	0.774(1)	1.5(2)
O(6)	0.254 (2)	0.478 (2)	0.595 (1)	1.5 (2)
(b) For a	t-UO₂SeO₄			
U	0.338 (2)	0.709 (2)	0.648(1)	1.2 (4)
Se	0.201(2)	0.440(3)	0.887(1)	1.3 (5)
O(1)	0.650 (3)	0.711 (3)	0.613(1)	1.4 (3)
O(2)	0.300 (2)	0.878 (4)	0.484(1)	1.4(3)
O(3)	0.016 (3)	0.852 (4)	0.600(1)	1.4 (3)
O(4)	0.175 (2)	0.598 (4)	0.781(1)	1.4 (3)
O(5)	0.581 (2)	0.484(4)	0.784 (1)	1.4(3)
O(6)	0.266 (2)	0.422 (4)	0.590(1)	1.4 (3)

Introduction. The structure determinations were undertaken in connection with thermochemical investigations on uranyl salts of oxyacids containing Group VI elements (Brandenburg, 1978; Cordfunke & Ouweltjes, 1977).

β -UO₂SO₄

Anhydrous β -UO₂SO₄ was prepared by dehydration of UO₂SO₄.2 $\frac{1}{2}$ H₂O (Cordfunke, 1969) in air at 500°C. Analysis gave U: 65.07% (calc. 65.02%). Neutron powder data were collected at the HFR in Petten [0.02

Fig. 1. Observed and calculated neutron powder pattern of (a) β -UO₂SO₄, (b) α -UO₂SeO₄. Full line: calculated profile; dots: measurements.

MOROSIN, B. (1978). Phys. Lett. A, 65, 53-54.

< (sin θ)/ λ < 0.36 Å⁻¹, step 0.072° 2 θ , λ = 2.572 Å, cylindrical sample ϕ = 10 mm, 10' Soller slits between reactor and monochromator, and in front of the BF₃ detector]. Cell constants were taken from Cordfunke (1972). Starting from the coordinates of the isostructural α -UO₂SeO₄ (Table 1*b*), the determination was carried out with the neutron data. The final *R* was 0.080. Coordinates and thermal parameters are listed in Table 1(*a*), selected bond lengths and angles in Table 2. Fig. 1(*a*) shows the fit of calculated and observed powder patterns, Fig. 2(*a*) the structure projected along the *b* axis.

α-UO₂SeO₄

Hydrated UO₂SeO₄ was prepared by dissolving UO₃ in a warm solution of H₂SeO₄ until saturation. After evaporation the viscous residue was heated to 200°C in air to obtain anhydrous UO₂SeO₄. Analysis gave U: 57.84% (calc. 57.64%); Se: 19.0% (calc. 19.12%). Step-scanned X-ray powder data were collected on a Philips PW 1150 diffractometer [0.06 < (sin θ)/ λ < 0.41 Å⁻¹, Cu K α , step 0.02° 2 θ]. Neutron powder data were collected as described for β -UO₂SO₄ (λ = 2.574 Å). Indexing of the powder pattern was performed from Cu K α Guinier film data (internal standard: α -quartz). The indexing program written by Visser (1969) led to the cell constants. Reflections 0k0 with k = 2n + 1 and h0l with l = 2n + 1 were absent. From

Fig. 2. Structure projected along b of (a) β -UO₂SO₄, (b) α -UO₂SeO₄. Coordination polyhedra are shown of U (large dots) and S/Se (small dots).

the X-ray intensities, separated into single reflections as circumstances permitted, a 56-term Patterson function was calculated. As reflections with l = 2n are systematically stronger than those with l = 2n + 1, the U atom must be in or close to the glide plane at $y = \frac{1}{4}$. From the Harker peaks two possible U positions were found: U either at 0.35, 0.75, 0.65 or at 0.35, 0.75, 0.90. Packing considerations, based on the assumption that the O atom polyhedra around the U are pentagonal bipyramids, led to the correct trial structure. Refinement was achieved with Rietveld's (1969) profile-fitting program applied to the neutron data, keeping a common temperature factor for the O atoms. Final R, as defined by Rietveld (1969): 0.064. Table 1(b) lists the final positional and temperature parameters; selected bond lengths and angles are listed in Table 2. Fig. 1(b) shows the fit of calculated and observed powder patterns, Fig. 2(b) the structure projected along the b axis.

β -UO₂SeO₄

This substance is obtained from α -UO₂SeO₄ by a reversible transition at about 300°C. From a high-temperature Guinier film α - and β -UO₂SeO₄ are seen to be isostructural. Comparison of the axial ratios of β -UO₂SO₄ (c/a = 1.897, c/b = 2.245), α -UO₂SeO₄ (1.928, 2.410) and β -UO₂SeO₄ (1.896, 2.284) indicates a very close analogy between β -UO₂SO₄ and β -UO₂SeO₄. Hence no further structure determination of β -UO₂SeO₄ was undertaken.

Discussion. The structures of the title compounds consist of infinite chains along b of pentagonal bipyramidal O atom polyhedra around the U atoms. In the chains the linkage is as shown in Fig. 3, a uranyl O atom of one group belonging to the pentagonal base plane of the next. This rather uncommon feature is also met in a high-pressure form of UO₃ (Siegel, Hoekstra & Sherry, 1966). Linkage between the chains proceeds via SO₄ or SeO₄ tetrahedra. Units of two pentagonal bipyramids linked by two tetrahedra are found, similar to those in UO₂SO₄. $2\frac{1}{2}H_2O$ (van der Putten & Loopstra, 1974) and UO₂SO₄. $3\frac{1}{2}H_2O$ (Brandenburg & Loopstra, 1973).

Table 2. Selected bond lengths (Å) and angles (°) for β -UO₂SO₄ and α -UO₂SeO₄

	β-UO₂SO₄	α -UO ₂ SeO ₄		β -UO ₂ SO ₄	α-UO₂SeO₄
U-0(1)	2.36 (2)	2.31(3)	O(1) - U - O(2)	74.1 (6)	73.2 (6)
U-O(2)	2.30(2)	2.33 (2)	O(2) - U - O(3)	75.9 (5)	73.6 (6)
U-O(3)	2.32(2)	2.30 (2)	O(3) - U - O(4)	73.4 (5)	72.5 (7)
U-O(4)	2.36 (2)	2.39 (2)	O(4) - U - O(5)	68.0 (5)	71.8(6)
U-O(5)	2.54(2)	2.49(2)	O(5) - U - O(1)	70.2 (5)	69.5 (6)
U-O(5)	1.80 (2)	1.79 (2)	O(5) - U - O(6)	176-1 (7)	175-2 (10)
U-O(6)	1.73 (1)	1.78 (2)			

Fig. 3. Chain of U bipyramids along 2_1 axis in α -UO₂SeO₄.

Fig. 2 shows that the main difference between β -UO₂SO₄ and α -UO₂SeO₄ is a slight change in the orientation of the bipyramids and tetrahedra. As we assume the structure of β -UO₂SeO₄ to be identical to that of β -UO₂SO₄ it appears that the phase transition between α - and β -UO₂SO₄, although accompanied by a sizeable increase in cell volume, from a structural point

of view only involves minor rotation of the coordination polyhedra.

The authors thank Professor Dr E. H. P. Cordfunke of ECN, Petten, for providing the sample of β -UO₂SO₄ and the chemical analyses. The step-scanned X-ray and neutron data were kindly collected by the staff of the neutron physics department of ECN, Petten.

References

- BRANDENBURG, N. P. (1978). Thesis, Univ. of Amsterdam.
- BRANDENBURG, N. P. & LOOPSTRA, B. O. (1973). Cryst. Struct. Commun. 2, 243–246.
- CORDFUNKE, E. H. P. (1969). J. Inorg. Nucl. Chem. 31, 1327-1335.
- CORDFUNKE, E. H. P. (1972). J. Inorg. Nucl. Chem. 34, 1551-1561.
- CORDFUNKE, E. H. P. & OUWELTJES, W. (1977). J. Chem. Thermodyn. 9, 1057–1062.
- PUTTEN, N. VAN DER & LOOPSTRA, B. O. (1974). Cryst. Struct. Commun. 3, 377–380.
- RIETVELD, H. M. (1969). J. Appl. Cryst. 2, 65-71.
- SIEGEL, S., HOEKSTRA, H. & SHERRY, E. (1966). Acta Cryst. 20, 292–295.
- VISSER, J. W. (1969). J. Appl. Cryst. 2, 89-95.

Acta Cryst. (1978). B34, 3736-3739

Dimeric Dibromo(2,3-butanedione dioximato)copper(II)

By H. Endres

Anorganisch-Chemisches Institut der Universität, Im Neuenheimer Feld 270, D-6900 Heidelberg, Federal Republic of Germany

(Received 16 May 1978; accepted 21 July 1978)

Abstract. $C_4H_8N_2O_2CuBr_2$, FW 339.5, triclinic P1, a = 7.759 (1), b = 8.594 (1), c = 8.273 (1) Å, $\alpha =$ 71.56 (1), $\beta = 69.08$ (1), $\gamma = 101.20$ (1)°, V =458.5 (1) Å, Z = 2, $D_c = 2.46$ g cm⁻³. There is one centrosymmetric dimer in the unit cell, bridged by two Br atoms. Chains are formed along x by hydrogen bridges (2.886 Å) between oxime O atoms of adjacent dimers. The coordination around each Cu is approximately square-pyramidal, the base formed by N and two strongly bonded Br atoms, the apex by a weakly bonded (2.883 Å) Br, belonging to the other Cu. The Cu-Cu distance is 3.599 Å. Atomic coordinates taken from the analogous chloro compound were refined by least squares to R = 0.066, based on 1696 observed reflections. Introduction. Bridged Cu complexes have received much interest in recent years because of magnetic exchange between the paramagnetic Cu ions. [Reviews have been given by Hatfield (1974) and Hodgson (1975).] For a better understanding of the correlation between structural and magnetic properties it is desirable to have a series of compounds where only the bridging atoms are changed. In dealing with halidebridged systems, there are a few pairs of compounds with amine or pyridine ligands and Cl or Br bridges (Table 2 and the references therein). Besides these ligands, halide-bridged complexes with dioximato ligands constitute another series of closely related compounds. Nevertheless, there is only one structure known, dimeric dichloro(2,3-butanedione dioximato)-